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ABSTRACT
Context: Several studies suggest that there is a relation between
code smells and architecture degradation. �ey claim that classes,
which have degraded architecture-wise, can be detected on the
basis of code smells, at least if these are manually identi�ed in the
source code.

Objective: To evaluate the suitability of contemporary code smell
detection tools by combining di�erent smell categories for �nding
classes that show symptoms of architecture degradation.

Method: A case study is performed in which architectural in-
consistencies in an open source system are detected via re�exion
modeling and code smell metrics are collected through several tools.
Using data mining techniques, we investigate if it is possible to auto-
matically and accurately classify classes connected to architectural
inconsistencies based on the gathered code smell data.

Results: Results suggest that existing code smell detection tech-
niques, as implemented in contemporary tools, are not su�ciently
accurate for classifying whether a class contains architectural in-
consistencies, even when combining categories of code smells.

Conclusion: It seems that current automated code smell detection
techniques require �ne-tuning for a speci�c system if they are to
be used for �nding classes with architectural inconsistencies. More
research on architecture violation causes is needed to build more
accurate detection techniques that work out-of-the-box.

CCS CONCEPTS
•So�ware and its engineering→ So�ware architectures; Ab-
straction, modeling and modularity; So�ware maintenance
tools;
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1 INTRODUCTION
When so�ware is developed and maintained over a longer period
of time, there is a chance that changes to the source code do not
conform to the initially intended architecture [24]. �is divergence
from the intended architecture by the actual implementation is
called so�ware architecture degradation or so�ware architecture ero-
sion [6]. �e phenomenon can be considered as problematic, since
it may complicate maintenance and also lead to a reduction in so�-
ware quality [14]. Hence, there is a need for approaches that help
practitioners to mitigate the e�ects of architecture erosion.

One way of combating architectural erosion is to explicitly model
the intended architecture of a so�ware system and to regularly
check if the source code is consistent with that model [6]. Unfortu-
nately, this straight-forward approach faces obstacles in practice,
since documentation or models of a system’s intended architecture
are o�en missing [7].

To address this common situation of absent architectural docu-
mentation, some research has targeted the question of how to deal
with so�ware architecture erosion if an explicit speci�cation of
the system’s intended architecture is missing. Studies suggest that
other symptoms of decaying so�ware quality, in particular code
smells [12], might be used to identify architecturally relevant code
anomalies and, thus, to act as a surrogate for explicit architectural
information [17, 18]. �e basic assumption is that classes which
contain many code smells, or particular types of code smells, are
also those that tend to violate the intended architecture. �erefore,
those classes should be prioritized for architectural repair.

�is approach is promising, since today code smells are relatively
well-known as a concept and there are many so�ware suites and
tools for automatic code smell detection [9]. If code smells are a suf-
�ciently good indicator for architectural inconsistencies in classes,
they could provide relatively cheap and easy-to-use support for
architectural repair, even if architectural documentation is missing.
So far, studies have found such a su�cient relation only between
architectural inconsistencies and code smells that are identi�ed
manually [17, 18]. �is is, however, problematic for the application
scenario described here, as manually identifying code smells in a
large code base might be a very laborious task. Instead, one might
as well invest the e�ort into building an architectural model and
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use this model directly to identify inconsistencies between source
code and architecture. �e bene�t of using code smells as surrogate
information might hence be very limited in terms of reduced e�ort.

Our goal in this work is to investigate whether code smells that
are detected automatically by contemporary tools without any �ne-
tuning can be used in combination to identify classes that contain
architectural inconsistencies at a su�cient accuracy. To this end, we
perform a case study on an open source system for which we could
develop and validate the intended architecture, which is needed
as a ground truth about architectural inconsistencies. We identify
architectural inconsistencies in the source code via the re�exion
modeling approach [20]. Several code smell detection tools are
applied to compute a variety of di�erent code smell metrics for the
investigated system. �erea�er, we try to see if a combination of
these metrics can be used to classify classes as inconsistency-free
or inconsistency-containing. We build these classi�cation models
using Naı̈ve Bayes [25] and we perform an exhaustive search of the
most accurate models, in terms of their precision and recall. �e
results suggest that even the most optimal models are currently not
accurate enough to identify classes with architectural inconsisten-
cies based on code smell data. �erefore, the challenge is to build
be�er detection tools, a task which requires more research on the
causes of architectural inconsistencies.

�e remainder of the paper is structured as follows. In the next
section, we discuss related work. �erea�er, in Sect. 3, we outline
the theoretical foundations and in Sect. 4, we describe the so�ware
used in the case study, as well as our method for data collection
and analysis. �is is followed by a description of the �ndings in
Sect. 5. We interpret the �ndings and outline threats to validity in
Sect. 6. Finally, the paper is summarized and concluded in Sect. 7.

2 RELATED WORK
�ere are a number of studies that target the relation between
architectural inconsistencies and code smells, or that use the same
case study application as we do here.

When it comes to the application scenario of this work, most
highly related are a number of studies by Macia et al. [17, 18]. In
these studies, the authors analyzed code smells found in a number
of systems and tried to relate these code smells to architectural
problems. To this end, they �ne-tuned detection strategies for a set
of code smells and each speci�c system and tried to see if particular
smells could be used for predicting architecture erosion. As an
example, they tried to �nd if classes that they classi�ed as “god
class” also contain a given number of architectural inconsistencies.
�ey found that the accuracy of using code smells for this task is
generally low [18], but improves if code smells are identi�ed by
human intuition instead of tooling [17]. We take this work as a
motivation for our study here, but we di�er in several ways. First
of all, we are not trying to use a particular type of code smell, such
as “god class”, for prediction. Instead, we aggregate code smells at a
higher level into categories as they are provided by several widely-
used tools, such as “all code smells related to code size”. Moreover,
we do not de�ne our own notion of code smells and customize
detection strategies to our case study system, but we rely on the
notions and con�gurations available in said tools. What is more,
we are testing the combination of di�erent code smell categories to

perform the classi�cation. �e idea is that the combination of this
information could lead to an improved prediction. Lastly, the case
study application we use here is substantially larger in terms of size
than the applications used in [17, 18] that were publicly accessible.
In another study [21] on largely the same systems, the authors also
consider the combination of di�erent code smells to �nd a relation
to so-called design problems, such as “fat interface”. �is work
is similar since we also combine code smells here, but the design
problems in [21] are not strictly focused on so�ware architecture.

Also Fontana et al. [10] build on the assumption that architecture
erosion and code smells are related. Like [17, 18], they are consid-
ering speci�c smells such as “god class”, but on top of that they
investigate the relationships among smells, such as co-occurrence,
in a large set of projects. �eir motivational idea is that combina-
tions of smells might allow for a be�er prioritization of classes for
architectural repair. We follow the same line of reasoning, but try
to combine smell categories, as they are present in tools, instead
of combining speci�c smells. Moreover, Fontana et al. [10] do not
relate smells to actual data on architectural inconsistencies.

Our case study application, JabRef, has been used in several other
so�ware engineering studies, some of which are also concerned
with architecture. For instance, Constantinou et al. [5] use JabRef
to evaluate an approach for architecture recovery on the basis of
structural metrics. Here, we are not building on structural metrics,
but on the higher-level notion of code smells. Moreover, we are not
trying to develop an architecture from selected indicators, but rather
to investigate the relation between such indicators and the actual
intended architecture. A number of further studies use JabRef to
evaluate speci�c metrics [8], quality models and quality assessment
methodologies [16], or bug detection strategies [1]. However, these
studies have no speci�c architectural focus.

3 FOUNDATIONS
�e main foundations for this work are architectural inconsistencies
as detected by the re�exion modeling approach, the concept of code
smells, and the Naı̈ve Bayes classi�cation algorithm.

3.1 Architectural Inconsistencies and
Re�exion Modeling

In this work, we refer to architectural inconsistencies as divergences
between the architecture of a so�ware system, as it is in intended by
its principal architects, and the actual source code. To obtain data on
these divergences, we apply the re�exion modeling approach [20].
We need this data as a “ground truth”, so that we are able to see if
we can predict classes with divergences based on code smell data.

Re�exion Modeling starts out with building the intended ar-
chitectural model of a so�ware system. �is model essentially
corresponds to a set of modules, i.e. partitions of the source code,
and the dependencies that are envisaged between them. Next, the
actual source code as it is implemented in the so�ware is mapped
onto the modules of the architecture. �erea�er, it is possible to
compare the actual dependencies as they are implemented in the
source code with the intended dependencies as they are speci�ed
in the architectural model. �is typically uncovers dependencies
where the source code is not consistent to the intended architecture.

Dependencies that exist in the source code, but that are not envis-
aged in the architectural model are usually viewed as problematic,
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essentially as violations of the model. A classic example of such
an unwanted dependency would be a class from the data layer of a
system that directly accesses a class from the user interface layer.
�ese are the dependencies that we consider as architectural incon-
sistencies in the remainder of the paper. Dependencies are always
directional, i.e., they have a source (e.g. a class accessing another
class by calling a method on an instance of this class) and a target
(the class being accessed from a di�erent context). A source code
class can be the source and target of multiple inconsistencies at the
same time.

Regardless of the direction of an architectural inconsistency that
a class participates in, it might also be the cause of the inconsistency.
For instance, if a class calls a method on another class that it should
not access according to the architectural model, it is the cause
of an inconsistency. In contrast, a class might also be misplaced
in the wrong architectural model and therefore be accessed by
other classes that need to do so, but which are not allowed by the
architectural model. In this case, the misplaced target class is the
cause of the inconsistency.

3.2 Code Smells and their Detection
Code smells [12] are anomalies in the source code that do not
usually represent a factual error or fault, but instead represent a
violation of coding standards that make the code harder to change
or more error-prone. O�entimes, they are considered as indicators
for maintainability problems and also architecture erosion [14].

Typical examples are classes that are very large or complex (the
“god class” smell), methods with very long parameter lists (the “long
parameter list” smell), or classes that excessively use the methods
of other classes (the “feature envy” smell). Although, the concept
of code smells is relatively well-known in so�ware engineering
research and practice, there is no generally agreed-upon and clear-
cut de�nition of what constitutes a smell. For example, there is
no uniform de�nition of when a class is too large and complex.
Nevertheless, there are many code quality and code smell detection
tools that provide custom notions for smells and also many di�er-
ent smells. �ese tools apply detection strategies [19], i.e., logical
constraints that are composed of so�ware metrics and permi�ed
metric thresholds, which allow to detect if a code smell is present in
a given context. Examples are speci�c se�ings for the complexity
value at which a class turns into a “god class”.

Here, we rely on the facilities as they are implemented and
con�gured out-of-the-box in several detection tools to compute
code smell data. Since the goal is to apply the tools in their default
con�guration, we do not a�empt to unify the varying notions
that di�erent tools have for code smells. Instead, we consider the
di�erent code smell categories that a tool provides. For instance,
the PMD tool detects a variety of smells such as “Excessive Method
Length” or “Excessive Parameter List” and sorts these smells into
the code size category. Here, we count the amount of code smells
present in a class based on their category1. �at is, we do not base
the analysis on, for instance, the amount of “Excessive Parameter
List” smells in a class, but instead on the amount of code size smells
in a class. �at way, we combine di�erent but related smells into
1To do so, we parse the result �les produced by the detection tools. �ese �les
essentially list smell occurrences by stating the class and line of code (if available),
smell name, and smell category in comma-separated or XML format.

a smell metric. Due to page restrictions and the huge amount of
di�erent smells that the tools consider, for instance PMD detects
13 di�erent types of smells in the code size category alone for Java
programs, we cannot present a mapping of smells to categories
here, but have to refer the reader to the documentation of the tools.

3.3 Data Mining and Naı̈ve Bayes
In this work, we connect data on architectural inconsistencies and
automatically-detected code smells and try to predict the former
using the la�er. We use data mining techniques, in particular the
Naı̈ve Bayes algorithm, for building and evaluating classi�cation
models that perform this prediction [25].

Naı̈ve Bayes is a popular and simple classi�cation algorithm that
learns a classi�cation scheme from the features of a set of observa-
tions. Each feature allows for a given set of values. �e algorithm
learns the classi�cation scheme by considering the probabilities
of values in the features of the observations. We are interested in
classifying classes as to whether they participate in architectural
inconsistencies, respectively whether they are the cause of archi-
tectural inconsistencies. Feature values correspond to the values of
particular code smell metrics, i.e. in what frequency a certain cate-
gory of code smells is present in a class. For example, one feature
is the PMD code size smell metric and possible feature values for
observations (classes) are based on the amount of smells in a class:
very low, low, medium, high, and very high. �us, the algorithm
builds a classi�cation model that identi�es classes as inconsistency-
containing if certain thresholds for code smells are present, and
inconsistency-free otherwise. �e amount of true-positives and
false-positives, as well as true-negatives and false-negatives, can be
used to compute the accuracy of a classi�er in terms of its precision
and recall.

Naı̈ve Bayes assumes a normal distribution and an independence
of the a�ributes used to build the classi�cation scheme. �ese
assumptions are o�en violated, but it has been found that the al-
gorithm is quite robust regarding such violations and o�en out-
performs more sophisticated classi�ers nevertheless [25, 26]. Its
robustness and simplicity are the reasons why we apply the algo-
rithm here. For more details on Naı̈ve Bayes, we refer to [25].

4 STUDY DESIGN
We perform a case study of a single open source system from which
we derive quantitative data through the application of re�exion
modeling and four di�erent code smell detection tools. From the
resulting data, we build Naı̈ve Bayes classi�ers for separating classes
that participate in architectural inconsistencies from those that do
not. �e following subsections describe these steps in more detail.

4.1 Data Collection
We investigate a long-living open source so�ware system for which
we could create and validate a re�exion model. �is so�ware is
the JabRef reference manager2. Jabref is a cross-platform refer-
ence manager for BibTeX and BibLaTeX bibliographies wri�en in
Java. Initiated in 2003, it consists of approximately 750 top-level
classes with 80 000 physical lines of code and almost 100 developers
contributed to its source code over time.
2�e project homepage is located at h�p://www.jabref.org.

http://www.jabref.org
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�e data in this paper is based on JabRef 3.5, released on 2016-
07-13. We built the re�exion model for this version in several
video-conferencing sessions together with the current develop-
ment team, of which the �rst author is a member. �e intended
architecture created in these session is now available in the project
documentation3. �e re�exion model was created and computa-
tion of architectural inconsistencies was done using the JITTAC
tool [3]. �is uncovered 186 classes participating in architectural
inconsistencies with a number of 1459 inconsistencies in total.

Although the re�exion model informs on which classes partic-
ipate in inconsistencies, it does not carry information on which
of the classes are the actual cause of an inconsistency. To obtain
data on causality, the �rst author investigated the code of every
class participating in inconsistencies, no ma�er whether it is the
source or target. �e classes were then classi�ed as to whether
they are the cause of at least one architectural inconsistency or
not. �is classi�cation was strengthened by comparing the source
code of the version of JabRef used here, v3.5, with a subsequent
release, v4.0-beta released on 2017-04-17. In the cases, where an
inconsistency had been resolved in the newer version, it could be
seen how the code had been changed. For instance, if a class was
moved to another package between v3.5 and v4.0-beta, thereby re-
solving an architectural inconsistency, this class can be considered
as misplaced in v3.5, being the original cause of the inconsistency.
We identi�ed a total of 90 classes as inconsistency causes this way.

Next to data on architectural violations and their causality, we
applied a number of code quality tools to the source code. More
precisely, we applied the code quality and code smell detection tools
Findbugs [11], PMD4, Sonar�be [4], and Sonargraph5. Each of
these tools provides a variety of metrics and indicators for problems
in source code. From the resulting data, we selected a number of
metrics that inform on code smells and aggregated this data at the
level of a class. For Findbugs, we considered the amount of code
smells in the categories of style, bad practice, and scary, which we
also aggregated to a total amount of code smells per class. In the
case of PMD, we calculated the amount of design, code size, coupling
and high priority code smells in a class. Sonar�be provides metrics
for the number of code smells in a class, the number of violations,
which, similar to its code smells metric refers to general purpose
issues in the source code, as well as the number of duplicated lines,
which corresponds to a particular type of code smell [12]. Further-
more, the tool provides metrics for the number of bugs and the
number of security vulnerabilities in a class. Since these aspects are
arguably more critical than code smells, we consider them as worth
investigating here as well. On top of that, Sonar�be computes
a metric for technical debt, which corresponds to the amount of
time needed to �x issues and code smells, as well as a technical debt
ratio, which compares the e�ort required to remedy existing tech-
nical debt with the e�ort of rewriting the code. �ese two metrics
seem interesting in our context, since they provide an aggregated
and more abstract notion of code smells. From Sonargraph, we ob-
tained a metric for the instability of a class, which detects classes as
instable depending on their incoming and outgoing dependencies.

3See h�ps://github.com/JabRef/jabref/wiki/High-Level-Documentation.
4�e project page of PMD is available at h�ps://pmd.github.io/.
5Sonargraph’s project page is available at h�ps://www.hello2morrow.com/products/
sonargraph/explorer.

Needless to say, there is a high variation as to what the tools
consider as code smells in classes for the di�erent metrics. In all
cases, we applied as li�le custom con�guration as possible to the
tools, since our goal is to see if we can �nd a relation between ar-
chitectural inconsistencies and code smells that have been detected
out-of-the-box and with li�le con�guration e�ort.

4.2 Data Analysis
During the data analysis phase, we merged all code smell data
and inconsistency data into a single data frame and normalized all
variables to make them �t for building classi�cation models.

Response variables were coded on a binary scale, indicating that
a class either participates in architectural inconsistencies or not, and
that it is the cause of inconsistencies or not. �e predictor variables,
i.e. all code smell metrics, were transformed to a �ve-point likert
scale, ranging from one (zero or very low number of code smells)
to �ve (very high number of code smells). We performed this
transformation based on the quintiles of each particular variable.
For example, all observations with a metric value lower than 20% of
all observed values (the classes within the �rst quintile for a variable,
i.e the classes with the least amount of code smells) were assigned
a value of one on the likert scale. Similarly, all observations with
a metric value higher than the 20% lowest of all observed values,
but lower than 40% (the classes within the second quintile for a
metric), were assigned a value of two on the likert scale, and so on.
For some metrics, there were so few code smells detected in the
data overall that the transformation led to a normalization of all
observations to the same value in the likert scale. As an example, if
more than 80% of all classes do not contain code smells of a certain
category, all classes will have the same value on the likert scale.
A variable where all observations are identical is not useful for
building classi�cation models, so we dropped it in the following.
�is was the case for all metrics from Findbugs, except for the total
amount of code smells in a class, ignoring their speci�c category.
Also for the bugs, security vulnerabilities, and duplicated lines
metrics from Sonar�be, there were too few observations for a
meaningful classi�cation. A�er these transformations, we arrived
at a set of ten metrics coming from all four code smell detection
tools as the input to building classi�cation models.

For the ten remaining metrics, we computed all possible com-
binations of a given size, ranging from one to ten. For instance,
we computed all combinations of two out of the ten metrics, of
three out of the ten metrics, and so on, independent of the order
of metrics. Each of the di�erent combinations corresponds to a
potential classi�cation model for predicting that a class participates
in architectural inconsistencies, or that it is the cause of such in-
consistencies. Given the set of ten metrics, there are 210 − 1 = 1023
combinations in total (leaving out the trivial combination of zero
metrics) that correspond to potential classi�cation models. For ev-
ery combination, we computed a Naı̈ve Bayes classi�er using R [22]
and its data mining extension RWeka [15]. To evaluate the model,
we used the same inital seed for all models, as well as ten-fold
cross-validation.

From the set of all classi�cation models, we are interested in the
“best” models overall, as well as the “best” model for a given level,
e.g., for models that consist of exactly two metrics. As indicated in

https://github.com/JabRef/jabref/wiki/High-Level-Documentation
https://pmd.github.io/
https://www.hello2morrow.com/products/sonargraph/explorer
https://www.hello2morrow.com/products/sonargraph/explorer
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Sect. 3.3, model quality can be determined by precision and recall.
Here, we are interested in classifying classes that participate in
inconsistencies as such. Hence, precision is calculated based on
whether the classes that are classi�ed as inconsistency-related also
actually participate in inconsistencies, i.e. the percentage of true
positives in all positives. A high value for recall is based on whether
a large part of all the classes that contain inconsistencies are also
classi�ed as such.

For our application scenario, using code smell metrics as a surro-
gate for architectural inconsistencies, it is important to take preci-
sion as well as recall into account. If we disregard one of the criteria,
we risk to select classi�ers that are very skewed. For instance, we
might end up with a classi�er that is 100% precise, because it only
classi�es a single class as inconsistency-related. In this case, most
of the actual architecture erosion in a system goes unnoticed by
the classi�er. Similarly, when only considering recall, we might
arrive at classi�ers that rate all classes as inconsistency-related. To
consider precision and recall equally, we used the F1-score, F-score
for short, which corresponds to the harmonic mean of the two
variables [23]. �e F-score is the metric, which we are trying to
maximize when searching for optimal models. Ideally, a suitable
classi�er should work for a large majority of the data, i.e. at least
two thirds of the classes that are identi�ed as inconsistency-related
should also ful�ll this property and a majority of all classes contain-
ing inconsistencies should also be classi�ed as such. Put di�erently,
a threshold for a desirable F-score is 0.66 or higher.

4.3 Replication Package
A replication package for the study is available at h�ps://github.
com/lenhard/saerocon2017-replication. �is package includes the
data frame on which the computations in the paper are based, as
well as the R code used to perform the computations.

5 FINDINGS
In the following, we describe our �ndings for models that pre-
dict whether a class participates in architectural inconsistencies
in Sect. 5.1. In Sect. 5.2, we report our �ndings for models that
predict whether a class is the cause of an inconsistency. All values
are rounded to two decimal places.

5.1 Classifying Classes Participating in
Inconsistencies

Tab. 1 lists the optimal classi�cation models with regard to their
F-score for classifying classes that participate in architectural in-
consistencies for di�erent levels of n.

�ere is no proper classi�er (F-score equals zero) with only one
metric. In this case, all models classify all classes as inconsistency-
free. �is results in precision and recall values of zero.

Overall, the classi�ers for rating whether a class participates in
architectural inconsistencies are the most accurate ones we have
found. Classi�ers that use eight or nine metrics respectively have
the highest F-score of 0.38. However, classi�ers using �ve, six, or
seven metrics are very close, with an F-score of 0.37. �e maximum
precision in all classi�ers is at the level of �ve or six metrics with
0.5. �e same precision value is almost reached for the optimal
classi�er using three metrics, but this model results in a lower recall.

�e maximum value for recall of 0.35 is reached with the optimal
classi�er using nine of the metrics.

When considering the metrics that are part of the optimal classi-
�ers, it can be seen that high priority smells reported by PMD are
part of every optimal classi�er. �e same almost applies to the code
smells metric reported by Sonar�be, which is only missing in one
optimal model. In contrast, smells reported by Findbugs are only
part of the single classi�er that uses all metrics. Also the remain-
ing metrics regarding technical debt by Sonar�be or instability
by SonarGraph are only part of around half of the classi�ers, and
mostly of those with a high amount of metrics.

Next to the results presented in Tab. 1, we also computed clas-
si�ers for rating that a class is the source of inconsistencies or the
target of inconsistencies. We refrain from reporting detailed results
for reasons of page space. When it comes to classi�ers that rate
whether a class is the source of inconsistencies, the results largely
mirror the ones depicted in Tab. 1, although at a lower level of ac-
curacy. �e F-score is highest with a value of 0.35 for models with
eight or nine metrics. Precision is highest with 0.37 for classi�ers
with three metrics and recall reaches its maximum of 0.38 for clas-
si�ers with eight or more metrics. When it comes to classi�cation
models that predict whether a class is the target of architectural in-
consistencies, there is no single model, regardless of the amount of
metrics used, that performs a meaningful classi�cation. In all cases,
all classes are classi�ed as not being the target of an inconsistency.

Lastly, we also tested the computation of classi�ers optimized
for their precision, instead of their F-score, to �nd the most precise
classi�ers. We can con�rm that more precise classi�ers do exist,
most notably at the level of four or �ve metrics. Here, the optimal
classi�ers are 100% precise, because the amount of classes they rate
as inconsistency-related is very low, i.e. one class for the classi�er
using four metrics and three classes for the one using �ve.

5.2 Classifying Classes Causing Inconsistencies
�e optimal classi�cation models for predicting whether classes
are the cause of an architectural inconsistency are shown in Tab. 2.

It can be seen in the table that classi�ers for rating classes as the
cause of architectural inconsistencies are less accurate overall than
the ones described in Sect. 5.1. Furthermore, at least �ve metrics
are required to build a useful classi�er and classi�ers using a lower
amount of metrics rate all classes as inconsistency-free.

�e classi�ers with the highest F-score of 0.09 use seven, eight,
or nine metrics respectively. �ese are also the classi�ers with the
highest recall of 0.07. Precision is highest for the optimal classi�er
involving six metrics with a value of 0.16.

When looking at the metrics that are part of the optimal classi-
�ers, it can be seen that the amount of high priority and code size
smells by PMD, as well as code smells and violations by Sonar�be
are part of every classi�er. In constrast, the technical debt ratio
reported by Sonar�be and the instability reported by SonarGraph
are the least frequent part of classi�ers.

Also for the classi�ers that rate classes as causes of architec-
tural inconsistencies, we tested an optimization for precise models.
Again, the results are similar to the ones reported in Sect. 5.1, but
at a lower level. �ere is a single classi�er using six metrics with a
precision value of one. As before, this classi�er rates a single class
of the actual 90 as inconsistency-related.

https://github.com/lenhard/saerocon2017-replication
https://github.com/lenhard/saerocon2017-replication
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Table 1: Optimal Models for Predicting Classes that Participate in Architectural Inconsistencies

N PMD PMD PMD PMD Sonar�be Sonar�be Sonar�be Sonar�be SonarGraph Findbugs F-Score Recall Precision
priority design coupling code size code smells violations technical debt technical debt ratio instability smells

2 X X 0.27 0.21 0.38
3 X X X 0.33 0.25 0.49
4 X X X X 0.35 0.30 0.43
5 X X X X X 0.37 0.29 0.50
6 X X X X X X 0.37 0.30 0.50
7 X X X X X X X 0.37 0.32 0.46
8 X X X X X X X X 0.38 0.34 0.42
9 X X X X X X X X X 0.38 0.35 0.40
10 X X X X X X X X X X 0.36 0.33 0.39

Table 2: Optimal Models for Predicting Classes that Cause Architectural Inconsistencies

N PMD PMD PMD PMD Sonar�be Sonar�be Sonar�be Sonar�be SonarGraph Findbugs F-Score Recall Precision
priority design coupling code size code smells violations technical debt technical debt ratio instability smells

5 X X X X X 0.02 0.01 0.14
6 X X X X X X 0.08 0.06 0.16
7 X X X X X X X 0.09 0.07 0.15
8 X X X X X X X X 0.09 0.07 0.14
9 X X X X X X X X X 0.09 0.07 0.13
10 X X X X X X X X X X 0.07 0.04 0.12

6 DISCUSSION
In the following, we interpret the results in Sect. 6.1 and discuss
threats to validity in Sect. 6.2.

6.1 Interpretation of the Results
Overall, the suitability of code smell metrics for classifying classes
with architectural inconsistencies seems debatable, no ma�er if the
goal is to rate whether a class is the cause of an inconsistency or
whether it just participates in one. As the exhaustive search of all
possible classi�ers shows, there is no single classi�er that correctly
classi�es a majority of the inconsistency-related classes and meets
the criteria we set out in Sect. 4.2. Practically all of the classi�ers
rate most of the classes as inconsistency-free. Also when ignoring a
balance between precision and recall and optimizing for precision,
resulting classi�ers are hardly suitable since they ignore nearly all
classes with architecture-related problems. �is �nding indicates
that there is no su�cient relation between code smells as they are
computed by contemporary tooling and architectural inconsisten-
cies. Although there are studies that have found a relation between
code smells and architectural inconsistencies [17], it seems that this
relation does not hold if code smells are identi�ed by a tool instead
of a human. Whereas prior studies [18] made this assertion for
particular code smells, such as god class, in isolation, we are able
to add the following: Even if automatically-detected code smells
are aggregated to smell categories, such as size-related smells, and
multiple categories are combined with each other, it is not possible
to classify classes as inconsistency-related or inconsistency-causing
with a suitable accuracy. To generalize this statement: It seems that
it is not possible to use contemporary code smell detection tools out-
of-the-box to aid in the task of architectural repair. For practice, this
means that instead of investing e�ort into the �ne-tuning of tools or
manual detection of smells, it seems more sensible to invest the ef-
fort into building a re�exion model and to obtain information about
architectural inconsistencies directly. �is can be interpreted as a
challenge to the research community to build be�er detection tools
and respectively to provide more insights into the actual causes

of architectural inconsistencies as a prerequisite to building be�er
tools. A lack of empirical research with regard to this challenge is
also con�rmed by a prior mapping study [13].

When looking at the optimal classi�ers, two code smell metrics
stick out. �ese are the amount of high priority smells as reported
by PMD and the amount of code smells as reported by Sonar�be.
It seems that among the metrics we tested, these are the most
appropriate for a classi�cation. What is more, also other metrics
that represent rather basic smell counts, i.e. all metrics reported by
PMD and violations reported by Sonarqube, seem to perform be�er
than newer and more specialized notions, such as the ones related
to technical debt. It seems that there is only li�le relation between
technical debt measures, as computed by the tools we used, and
architectural inconsistencies. Architectural problems are common
forms of technical debt, and therefore a stronger relation could have
been expected. More work on metrics regarding concepts such as
technical debt is needed to produce more accurate measurements.

Lastly, some smell metrics, in particular the ones reported by
Findbugs, perform relatively bad when compared to others, such
as those reported by PMD. �is is likely the case because of the
granularity in which code smells are identi�ed. In general, PMD is
much more verbose than Findbugs, reporting smells in numbers that
are an order of magnitude higher than for Findbugs. �is results
in a stronger deviation of smell counts for di�erent classes, which
makes it easier for a data mining algorithm to use the metrics for
building a classi�cation model. �us, our suggestion for improving
detection tools for the task at hand is to make them verbose.

6.2 �reats to Validity
Our discussion of threats to validity distinguishes between external,
construct, and internal validity, as well as reliability, according to
the categorization by Brewer and Crano [2].

External validity concerns the generalizabilty of the �ndings to
a larger population. Our results build upon a case study of a single
system, which is clearly a threat to generalizability. Classi�ers and
code smell counts can be di�erent for di�erent systems, especially
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if they di�er signi�cantly in size, if they are wri�en in a di�erent
programming language, and possibly also if they come from a closed
source context instead of the open source context of our case study
application. Furthermore, there is a risk of over��ing the classi�ers
to the current system when using too many variables. Essentially,
this means that the classi�ers with more variables presented here
might be less generalizable. Further studies on di�erent systems
are needed to complement the presented results.

�reats to construct validity concern the degree to which the
measurements made relate to the phenomenon under study and
there are several such threats here. Firstly, data on architectural in-
consistencies is computed based on an architectural model. Errors
in this model are a threat to construct validity. Since we built the
model together with the current development team, we are con�-
dent that the amount of such errors is limited. A next threat lies
in the code quality tools we applied to obtain code smell data. Our
objective is to test the suitability of these tools, but we cannot guar-
antee that their notion of code smells is ultimately valid. Moreover,
the statistical methods that we applied might be a source of threats
to construct validity. �is refers to the Naı̈ve Bayes algorithm we
used to build the classi�ers. We cannot prove that the independence
assumption of the algorithm holds for all the variables that we used
here. Nevertheless, Naı̈ve Bayes has been shown to be robust even
when used with dependent variables, as discussed in Sect. 3.3.

�reats related to internal validity concern cause-e�ect relation-
ships. Since this study is not about observing a cause-e�ect rela-
tionship, but about the relation between two factors, such threats
are not applicable here.

Reliability concerns the reproducability of the results when per-
forming the measurements and the computations multiple times.
To improve reliability here, the artifacts and code produced by one
author were independently cross-checked by the others. Moreover,
the data and the scripts for computing the results are made pub-
licly available as a replication package to make it easier for other
researchers to double-check our results.

7 CONCLUSION
In this work, we performed a case study using one open source
system with the goal to see if code smells that are computed auto-
matically by code quality tools can be combined to rate whether
classes participate in architectural inconsistencies. We built and
validated a re�exion model for the case study system to obtain data
on architectural inconsistencies. �erea�er, we applied data mining
techniques using Naı̈ve Bayes to build classi�ers and performed an
exhaustive search of all possible classi�ers for the most accurate
results. Since the accuracy even of the most optimal classi�ers is
low, it seems that code smells as detected by contemporary tooling
are not suitable for rating classes as inconsistency-related.

�e results presented here demonstrate that more sophisticated
detection mechanisms for architectural inconsistencies are needed.
Practitioners could bene�t from tooling that helps them to identify
architecturally-problematic classes without requiring too much
manual e�ort. To make such tools a reality, it seems that more
research on causes of architectural inconsistencies is required. To
this end, we are currently working on a classi�cation scheme for
categorizing the causes of architectural inconsistencies. �is might

enable us to build more accurate prediction techniques for certain
types of architecture violation causes.
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